Skip to main content

Gleitendurchschnitt Prognose Berechnung


Gleitende durchschnittliche Vorhersage Einführung. Wie Sie vielleicht vermuten, sehen wir uns einige der primitivsten Ansätze zur Prognose an. Aber hoffentlich sind dies zumindest eine lohnende Einführung in einige der Computing-Fragen im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir fortfahren, indem wir am Anfang beginnen und mit Moving Average Prognosen arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist mit gleitenden durchschnittlichen Prognosen vertraut, unabhängig davon, ob sie glauben, dass sie sind. Alle College-Studenten machen sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, wo Sie vier Tests während des Semesters haben werden. Nehmen wir an, Sie haben eine 85 bei Ihrem ersten Test. Was würdest du für deinen zweiten Test-Score vorhersagen Was denkst du, dein Lehrer würde für deinen nächsten Test-Score voraussagen Was denkst du, deine Freunde können für deinen nächsten Test-Score voraussagen Was denkst du, deine Eltern können für deinen nächsten Test-Score voraussagen All das Blabbing, das du mit deinen Freunden und Eltern machen kannst, sie und deinem Lehrer sind sehr wahrscheinlich zu erwarten, dass du etwas im Bereich der 85 bekommst, die du gerade bekommen hast. Nun, jetzt können wir davon ausgehen, dass trotz Ihrer Selbst-Förderung zu Ihren Freunden, Sie über-schätzen Sie sich selbst und Figur können Sie weniger für den zweiten Test zu studieren und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmert zu gehen Erwarten Sie auf Ihrem dritten Test zu bekommen Es gibt zwei sehr wahrscheinlich Ansätze für sie eine Schätzung zu entwickeln, unabhängig davon, ob sie es mit Ihnen teilen wird. Sie können sich selbst sagen, "dieser Kerl ist immer bläst Rauch über seine smarts. Er wird noch 73, wenn er glücklich ist. Vielleicht werden die Eltern versuchen, mehr unterstützend zu sein und zu sagen, quotWell, so weit hast du eine 85 und eine 73 bekommen, also vielleicht solltest du auf eine (85 73) 2 79 kommen. Ich weiß nicht, vielleicht, wenn du weniger feiern musst Und werent wedelte den Wiesel überall auf den Platz und wenn du anfing, viel mehr zu studieren, könntest du eine höhere Punktzahl bekommen. Diese beiden Schätzungen belegen tatsächlich durchschnittliche Prognosen. Die erste nutzt nur Ihre aktuellste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als eine gleitende durchschnittliche Prognose mit einer Periode von Daten bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass all diese Leute, die auf deinem großen Verstand zerschlagen sind, dich irgendwie verärgert haben und du entscheidest, den dritten Test aus deinen eigenen Gründen gut zu machen und eine höhere Punktzahl vor deinem Quoten zu setzen. Sie nehmen den Test und Ihre Partitur ist eigentlich ein 89 Jeder, auch Sie selbst, ist beeindruckt. So, jetzt haben Sie die endgültige Prüfung des Semesters kommen und wie üblich fühlen Sie sich die Notwendigkeit, goad jeder in die Herstellung ihrer Vorhersagen darüber, wie youll auf den letzten Test zu tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich kannst du das Muster sehen. Was glaubst du, ist die genaueste Pfeife während wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zurück, die von deiner entfremdeten Halbschwester namens Whistle während wir arbeiten. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst stellen wir die Daten für eine dreistellige gleitende durchschnittliche Prognose vor. Der Eintrag für Zelle C6 sollte jetzt sein. Du kannst diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie sich der Durchschnitt über die aktuellsten historischen Daten bewegt, aber genau die drei letzten Perioden verwendet, die für jede Vorhersage verfügbar sind. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngsten Vorhersage zu entwickeln. Dies unterscheidet sich definitiv von dem exponentiellen Glättungsmodell. Ive enthalten die quotpast Vorhersagen, weil wir sie in der nächsten Webseite verwenden, um die Vorhersagegültigkeit zu messen. Jetzt möchte ich die analogen Ergebnisse für eine zweistufige gleitende durchschnittliche Prognose vorstellen. Der Eintrag für Zelle C5 sollte jetzt sein. Du kannst diese Zellformel in die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast-Vorhersagen für illustrative Zwecke und für die spätere Verwendung in der Prognose-Validierung enthalten. Einige andere Dinge, die wichtig sind, um zu bemerken. Für eine m-Periode gleitende durchschnittliche Prognose werden nur die m aktuellsten Datenwerte verwendet, um die Vorhersage zu machen. Nichts anderes ist nötig Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie quotpast Vorhersagen quot, bemerken, dass die erste Vorhersage in Periode m 1 auftritt. Beide Themen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der beweglichen Mittelfunktion. Jetzt müssen wir den Code für die gleitende Mittelprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden gelten, die Sie in der Prognose und dem Array von historischen Werten verwenden möchten. Sie können es in der beliebigen Arbeitsmappe speichern. Funktion MovingAverage (Historical, NumberOfPeriods) Als Single Declaring und Initialisierung von Variablen Dim Item als Variant Dim Zähler als Integer Dim Akkumulation als Single Dim HistoricalSize als Integer Initialisierung von Variablen Counter 1 Akkumulation 0 Bestimmen der Größe von Historical Array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulation der entsprechenden Anzahl der aktuellsten bisher beobachteten Werte Akkumulation Akkumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie wollen die Funktion auf der Kalkulationstabelle positionieren, so dass das Ergebnis der Berechnung erscheint, wo es sich ansieht. Die durchschnittliche und exponentielle Glättung von Modellen Als erster Schritt in die Bewegung über mittlere Modelle, zufällige Wandermodelle und lineare Trendmodelle, Nichtsaison Muster und Trends können mit einem gleitenden Durchschnitt oder Glättungsmodell extrapoliert werden. Die Grundannahme hinter Mittelwertbildung und Glättung von Modellen ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann das als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-without-drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als quotsmoothedquot Version der ursprünglichen Serie, weil kurzfristige Mittelung hat die Wirkung der Glättung der Beulen in der ursprünglichen Serie. Durch die Anpassung des Grades der Glättung (die Breite des gleitenden Durchschnitts), können wir hoffen, eine Art von optimalem Gleichgewicht zwischen der Leistung der mittleren und zufälligen Wandermodelle zu schlagen. Die einfachste Art von Mittelungsmodell ist die. Einfache (gleichgewichtete) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Durchschnitt der letzten m Beobachtungen: (Hier und anderswo verwende ich das Symbol 8220Y-hat8221 zu stehen Für eine Prognose der Zeitreihe Y, die zum frühestmöglichen früheren Datum durch ein gegebenes Modell gemacht wurde.) Dieser Durchschnitt ist in der Periode t (m1) 2 zentriert, was impliziert, dass die Schätzung des lokalen Mittels dazu neigen wird, hinter dem wahren zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird: Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen . Zum Beispiel, wenn Sie durchschnittlich die letzten 5 Werte sind, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte. Beachten Sie, dass, wenn m1, das einfache gleitende Durchschnitt (SMA) - Modell entspricht dem zufälligen Walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar mit der Länge der Schätzperiode), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um die besten Quoten für die Daten zu erhalten, d. h. die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel für eine Reihe, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst können wir versuchen, es mit einem zufälligen Spaziergang Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff: Das zufällige Spaziergang Modell reagiert sehr schnell auf Änderungen in der Serie, aber in diesem Fall nimmt es viel von der Quotierung in der Daten (die zufälligen Schwankungen) sowie das quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen ausprobieren, erhalten wir einen glatteren Prognosen: Der 5-fach einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Spaziergangmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zurückzukehren. (Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie im zufälligen Spaziergang Modell. So geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während die Prognosen aus dem zufälligen Wandermodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Durchschnitt der letzten Werte. Die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Vertrauensgrenzen werden nicht weiter erhöht, wenn der Prognosehorizont zunimmt. Das ist offensichtlich nicht richtig Leider gibt es keine zugrundeliegende statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Vertrauensgrenzen für die längerfristigen Prognosen zu berechnen. Zum Beispiel könnten Sie eine Kalkulationstabelle einrichten, in der das SMA-Modell zur Vorhersage von 2 Schritten voraus, 3 Schritten voraus, etc. im historischen Datenmuster verwendet werden würde. Sie können dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addition und Subtraktion von Vielfachen der entsprechenden Standardabweichung aufbauen. Wenn wir einen 9-fach einfachen gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt nun 5 Perioden ((91) 2). Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10: Beachten Sie, dass die Prognosen in der Tat hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welche Menge an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistik vergleicht, auch einen 3-Term-Durchschnitt: Modell C, der 5-fache gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE um einen kleinen Marge über die 3 - term und 9-term Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Zurück zum Anfang der Seite) Browns Einfache Exponential-Glättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, dass es die letzten k-Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen völlig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise abgezinst werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die 2. jüngste, und die 2. jüngsten sollte ein wenig mehr Gewicht als die 3. jüngsten bekommen, und bald. Das einfache exponentielle Glättungsmodell (SES) erreicht dies. Sei 945 eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. h. den lokalen Mittelwert) der Reihe repräsentiert, wie er von den Daten bis zur Gegenwart geschätzt wird. Der Wert von L zum Zeitpunkt t wird rekursiv aus seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf den letzten Wert steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuell geglättete Wert: Gleichermaßen können wir die nächste Prognose direkt in Bezug auf vorherige Prognosen und frühere Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose erhalten, indem man die vorherige Prognose in Richtung des vorherigen Fehlers um einen Bruchteil 945 anpasst Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Rabattfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu bedienen, wenn man das Modell auf einer Tabellenkalkulation implementiert: Es passt in eine Einzelzelle und enthält Zellreferenzen, die auf die vorherige Prognose, die vorherige Beobachtung und die Zelle hinweisen, in der der Wert von 945 gespeichert ist. Beachten Sie, dass bei 945 1 das SES-Modell einem zufälligen Walk-Modell entspricht (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, vorausgesetzt, dass der erste geglättete Wert gleich dem Mittelwert ist. (Zurück zum Anfang der Seite) Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose beträgt 1 945 gegenüber dem Zeitraum, für den die Prognose berechnet wird. (Das soll nicht offensichtlich sein, aber es kann leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher dazu, hinter den Wendepunkten um etwa 1 945 Perioden zurückzukehren. Zum Beispiel, wenn 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Verzögerung) ist die Prognose der einfachen exponentiellen Glättung (SES) der einfachen gleitenden Durchschnitts - (SMA) - Prognose etwas überlegen, da sie die jüngste Beobachtung - Es ist etwas mehr auffallend auf Veränderungen, die in der jüngsten Vergangenheit auftreten. Zum Beispiel hat ein SMA-Modell mit 9 Begriffen und einem SES-Modell mit 945 0,2 beide ein Durchschnittsalter von 5 für die Daten in ihren Prognosen, aber das SES-Modell setzt mehr Gewicht auf die letzten 3 Werte als das SMA-Modell und am Gleichzeitig ist es genau 8220forget8221 über Werte mehr als 9 Perioden alt, wie in dieser Tabelle gezeigt: Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der stufenlos variabel ist, so dass er leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Baureihe ergibt sich auf 0,2961, wie hier gezeigt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 10.2961 3.4 Perioden, was ähnlich ist wie bei einem 6-fach einfach gleitenden Durchschnitt. Die Langzeitprognosen des SES-Modells sind eine horizontale Gerade. Wie im SMA-Modell und dem zufälligen Walk-Modell ohne Wachstum. Allerdings ist zu beachten, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftig aussehenden Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das zufällige Spaziergangmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbar ist als das zufällige Spaziergangmodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So bietet die statistische Theorie der ARIMA-Modelle eine fundierte Grundlage für die Berechnung von Konfidenzintervallen für das SES-Modell. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht-seasonalen Differenz, einem MA (1) Term und keinem konstanten Term. Ansonsten bekannt als ein quotARIMA (0,1,1) Modell ohne constantquot. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Menge 1-945 im SES-Modell. Zum Beispiel, wenn man ein ARIMA (0,1,1) Modell ohne Konstante an die hier analysierte Serie passt, ergibt sich der geschätzte MA (1) Koeffizient 0,7029, was fast genau ein minus 0.2961 ist. Es ist möglich, die Annahme eines nicht-null konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Um dies zu tun, geben Sie einfach ein ARIMA-Modell mit einer nicht-seasonalen Differenz und einem MA (1) Begriff mit einer Konstante, d. h. ein ARIMA (0,1,1) Modell mit konstant. Die langfristigen Prognosen werden dann einen Trend haben, der dem durchschnittlichen Trend entspricht, der über den gesamten Schätzungszeitraum beobachtet wird. Sie können dies nicht in Verbindung mit saisonaler Anpassung tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA eingestellt ist. Allerdings können Sie einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Vorhersageverfahren verwenden. Die jeweilige Quotenquote (prozentuale Wachstumsrate) pro Periode kann als Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmus-Transformation angepasst ist, oder sie kann auf anderen, unabhängigen Informationen über langfristige Wachstumsaussichten basieren . (Zurück zum Seitenanfang) Browns Linear (dh Double) Exponentielle Glättung Die SMA Modelle und SES Modelle gehen davon aus, dass es in den Daten keinen Trend gibt (was in der Regel ok oder zumindest nicht so schlecht ist für 1- Schritt-voraus Prognosen, wenn die Daten relativ laut sind), und sie können modifiziert werden, um einen konstanten linearen Trend wie oben gezeigt zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen den Lärm auszeichnet, und wenn es notwendig ist, mehr als einen Zeitraum voraus zu prognostizieren, dann könnte auch eine Einschätzung eines lokalen Trends erfolgen Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl von Ebene als auch von Trend berechnet. Das einfachste zeitveränderliche Trendmodell ist das lineare, exponentielle Glättungsmodell von Browns, das zwei verschiedene geglättete Serien verwendet, die zu unterschiedlichen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine ausgefeiltere Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des linearen exponentiellen Glättungsmodells von Brown8217s, wie das des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von verschiedenen, aber äquivalenten Formen ausgedrückt werden. Die quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung auf die Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern Sie sich, dass unter einfachem Exponentielle Glättung, das wäre die Prognose für Y in der Periode t1.) Dann sei Squot die doppelt geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung (mit demselben 945) auf die Reihe S erhalten wird: Schließlich ist die Prognose für Y tk. Für irgendwelche kgt1 ist gegeben durch: Dies ergibt e 1 0 (d. h. Cheat ein Bit, und lassen Sie die erste Prognose gleich der tatsächlichen ersten Beobachtung) und e 2 Y 2 8211 Y 1. Nach denen Prognosen mit der obigen Gleichung erzeugt werden. Dies ergibt die gleichen angepassten Werte wie die Formel auf Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination aus exponentieller Glättung mit saisonaler Anpassung darstellt. Holt8217s Lineare Exponential-Glättung Brown8217s LES-Modell berechnet lokale Schätzungen von Level und Trend durch Glättung der aktuellen Daten, aber die Tatsache, dass es dies mit einem einzigen Glättungsparameter macht, legt eine Einschränkung auf die Datenmuster, die es passen kann: das Niveau und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem, indem es zwei Glättungskonstanten einschließt, eine für die Ebene und eine für den Trend. Zu jeder Zeit t, wie in Brown8217s Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem Wert von Y, der zum Zeitpunkt t beobachtet wurde, und den vorherigen Schätzungen des Niveaus und des Tendenzes durch zwei Gleichungen berechnet, die eine exponentielle Glättung für sie separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der Istwert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv durch Interpolation zwischen Y tshy und dessen Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1 945 berechnet. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine laute Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv durch Interpolation zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 berechnet. Mit Gewichten von 946 und 1-946: Die Interpretation der Trend-Glättungs-Konstante 946 ist analog zu der Niveau-Glättungs-Konstante 945. Modelle mit kleinen Werten von 946 gehen davon aus, dass sich der Trend nur sehr langsam über die Zeit ändert, während Modelle mit Größer 946 nehmen an, dass es sich schneller ändert. Ein Modell mit einer großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, denn Fehler in der Trendschätzung werden bei der Prognose von mehr als einer Periode sehr wichtig. (Zurück zum Seitenanfang) Die Glättungskonstanten 945 und 946 können in der üblichen Weise durch Minimierung des mittleren quadratischen Fehlers der 1-Schritt-voraus-Prognosen geschätzt werden. Wenn dies in Statgraphics geschieht, ergeben sich die Schätzungen auf 945 0.3048 und 946 0,008. Der sehr kleine Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung des Trends von einer Periode zur nächsten einnimmt, so dass dieses Modell grundsätzlich versucht, einen langfristigen Trend abzuschätzen. In Analogie zum Begriff des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Serie verwendet wird, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet wird, proportional zu 1 946, wenn auch nicht genau gleich . In diesem Fall stellt sich heraus, dass es sich um 10.006 125 handelt. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 wirklich 3 Dezimalstellen ist, aber sie ist von der gleichen allgemeinen Größenordnung wie die Stichprobengröße von 100 Dieses Modell ist durchschnittlich über eine ganze Menge Geschichte bei der Schätzung der Trend. Die prognostizierte Handlung unten zeigt, dass das LES-Modell einen geringfügig größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Auch der Schätzwert von 945 ist fast identisch mit dem, der durch die Anpassung des SES-Modells mit oder ohne Trend erhalten wird. Das ist also fast das gleiche Modell. Nun, sehen diese aus wie vernünftige Prognosen für ein Modell, das soll ein lokaler Trend schätzen Wenn Sie diese Handlung, es sieht so aus, als ob der lokale Trend hat sich nach unten am Ende der Serie Was ist passiert Die Parameter dieses Modells Wurden durch die Minimierung der quadratischen Fehler von 1-Schritt-voraus Prognosen, nicht längerfristige Prognosen geschätzt, in welchem ​​Fall der Trend doesn8217t machen einen großen Unterschied. Wenn alles, was Sie suchen, sind 1-Schritt-vor-Fehler, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell mehr im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trend-Glättung konstant manuell anpassen, so dass es eine kürzere Grundlinie für Trendschätzung verwendet. Zum Beispiel, wenn wir uns dafür entscheiden, 946 0,1 zu setzen, dann ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so vermitteln. Hier8217s, was die Prognose Handlung aussieht, wenn wir 946 0,1 gesetzt, während halten 945 0,3. Das sieht für diese Serie intuitiv vernünftig aus, obwohl es wahrscheinlich gefährlich ist, diesen Trend in Zukunft mehr als 10 Perioden zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber es werden ähnliche Ergebnisse (mit etwas mehr oder weniger Ansprechverhalten) mit 0,5 und 0,2 erhalten. (A) Holts linear exp. Glättung mit alpha 0.3048 und beta 0.008 (B) Holts linear exp. Glättung mit alpha 0,3 und beta 0,1 (C) Einfache exponentielle Glättung mit alpha 0,5 (D) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0.2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl treffen können Von 1-Schritt-voraus Prognosefehler innerhalb der Datenprobe Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir stark davon überzeugt sind, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zu stützen, so können wir einen Fall für das LES-Modell mit 945 0,3 und 946 0,1 machen. Wenn wir agnostisch darüber sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein und würde auch mehr Mittelwert der Prognosen für die nächsten 5 oder 10 Perioden geben. (Rückkehr nach oben) Welche Art von Trend-Extrapolation ist am besten: horizontal oder linear Empirische Evidenz deutet darauf hin, dass, wenn die Daten bereits für die Inflation angepasst wurden (falls erforderlich), dann kann es unklug sein, kurzfristig linear zu extrapolieren Trends sehr weit in die Zukunft. Trends, die heute deutlich werden, können in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, erhöhter Konkurrenz und zyklischer Abschwünge oder Aufschwünge in einer Branche nachlassen. Aus diesem Grund führt eine einfache, exponentielle Glättung oftmals zu einem besseren Out-of-Sample, als es sonst zu erwarten wäre, trotz der quadratischen horizontalen Trend-Extrapolation. Gedämpfte Trendmodifikationen des linearen exponentiellen Glättungsmodells werden auch in der Praxis häufig verwendet, um eine Note des Konservatismus in seine Trendprojektionen einzuführen. Das LES-Modell mit gedämpftem Trend kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA (1,1,2) - Modells, implementiert werden. Es ist möglich, Konfidenzintervalle um Langzeitprognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem sie sie als Sonderfälle von ARIMA-Modellen betrachten. (Vorsicht: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt von (i) dem RMS-Fehler des Modells ab, (ii) der Art der Glättung (einfach oder linear) (iii) der Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der voraussichtlichen Perioden, die Sie prognostizieren. Im Allgemeinen werden die Intervalle schneller ausgebreitet als 945 im SES-Modell größer und sie breiten sich viel schneller aus, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im ARIMA-Modellteil der Notizen weiter erörtert. (Zurück zum Seitenanfang) A Prognoseberechnung Beispiele A.1 Prognoseberechnungsmethoden Es sind zwölf Methoden zur Berechnung von Prognosen verfügbar. Die meisten dieser Methoden sorgen für eine begrenzte Benutzerkontrolle. Zum Beispiel könnte das Gewicht der letzten historischen Daten oder der Datumsbereich der in den Berechnungen verwendeten historischen Daten angegeben werden. Die folgenden Beispiele zeigen das Berechnungsverfahren für jede der verfügbaren Prognosemethoden, wobei ein identischer Satz historischer Daten vorliegt. Die folgenden Beispiele verwenden die gleichen Verkaufs - und Verkaufsdaten von 2004 und 2005, um eine Umsatzprognose von 2006 zu erzielen. Neben der Prognoseberechnung enthält jedes Beispiel eine simulierte Prognose für die Dauer von drei Monaten (Verarbeitungsoption 19 3), die dann für prozentuale Genauigkeit und mittlere Absolutabweichungsberechnungen verwendet wird (tatsächlicher Umsatz im Vergleich zur simulierten Prognose). A.2 Prognoseleistungsbewertungskriterien Abhängig von Ihrer Auswahl an Verarbeitungsoptionen und den in den Verkaufsdaten vorhandenen Trends und Mustern werden einige Prognosemethoden besser als andere für einen bestimmten historischen Datensatz durchgeführt. Eine für ein Produkt geeignete Vorhersagemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Es ist auch unwahrscheinlich, dass eine Prognosemethode, die auf einer Stufe des Produktlebenszyklus gute Ergebnisse liefert, während des gesamten Lebenszyklus angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten. Dies sind mittlere Absolute Abweichung (MAD) und Prozent der Genauigkeit (POA). Beide dieser Leistungsbewertungsmethoden erfordern historische Verkaufsdaten für einen vom Benutzer festgelegten Zeitraum. Diese Zeitspanne wird als Halteperiode oder Perioden am besten passt (PBF). Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche der Prognosemethoden bei der nächsten Prognoseprojektion verwendet werden sollen. Diese Empfehlung ist für jedes Produkt spezifisch und kann von einer Prognoseerzeugung zur nächsten wechseln. Die beiden prognostizierten Leistungsbewertungsmethoden werden in den Seiten nach den Beispielen der zwölf Prognosemethoden gezeigt. A.3 Methode 1 - angegebener Prozentsatz über letztes Jahr Diese Methode multipliziert die Verkaufsdaten des Vorjahres mit einem vom Anwender angegebenen Faktor, zB 1,10 für 10 Zunahme oder 0,97 für 3 Abnahmen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus der benutzerdefinierten Anzahl von Zeiträumen zur Auswertung der Prognoseleistung (Verarbeitungsoption 19). A.4.1 Prognoseberechnung Umfang des Verkaufsverlaufs bei der Berechnung des Wachstumsfaktors (Verarbeitungsoption 2a) 3 in diesem Beispiel. Summe der letzten drei Monate des Jahres 2005: 114 119 137 370 Summe der gleichen drei Monate für das Vorjahr: 123 139 133 395 Der berechnete Faktor 370395 0.9367 Berechnen Sie die Prognosen: Januar 2005 Umsatz 128 0.9367 119.8036 oder ca. 120. Februar 2005 Umsatz 117 0.9367 109.5939 oder ca. 110. März 2005 Umsatz 115 0.9367 107.7205 oder ca. 108 A.4.2 Simulierte Prognoseberechnung Summe der drei Monate 2005 vor der Halteperiode (Juli, Aug, September): 129 140 131 400 Summe der gleichen drei Monate für die Vorjahr: 141 128 118 387 Der berechnete Faktor 400387 1.033591731 Berechnen der simulierten Prognose: Oktober 2004 Umsatz 123 1.033591731 127.13178 November 2004 Umsatz 139 1.033591731 143.66925 Dezember 2004 Umsatz 133 1.033591731 137.4677 A.4.3 Prozent der Genauigkeitsberechnung POA (127.13178 143.66925 137.4677) (114 119 137) 100 408,26873 370 100 110.3429 A.4.4 Mittlere Absolutabweichungsberechnung MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Methode 3 - Letztes Jahr zu diesem Jahr Diese Methode Kopiert die Verkaufsdaten vom Vorjahr auf das nächste Jahr. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der für die Auswertung der Prognoseleistung festgelegten Zeiträume (Verarbeitungsoption 19). A.6.1 Prognoseberechnung Anzahl der Perioden, die in den Durchschnitt einbezogen werden sollen (Verarbeitungsoption 4a) 3 in diesem Beispiel Für jeden Monat der Prognose durchschnittlich die letzten drei Monate Daten. Januar-Prognose: 114 119 137 370, 370 3 123.333 oder 123 Februar Prognose: 119 137 123 379, 379 3 126.333 oder 126 März Vorhersage: 137 123 126 379, 386 3 128.667 oder 129 A.6.2 Simulierte Prognoseberechnung Oktober 2005 Umsatz (129 140 131)3 133.3333 November 2005 sales (140 131 114)3 128.3333 December 2005 sales (131 114 119)3 121.3333 A.6.3 Percent of Accuracy Calculation POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Mean Absolute Deviation Calculation MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Method 5 - Linear Approximation Linear Approximation calculates a trend based upon two sales history data points. Those two points define a straight trend line that is projected into the future. Use this method with caution, as long range forecasts are leveraged by small changes in just two data points. Required sales history: The number of periods to include in regression (processing option 5a), plus 1 plus the number of time periods for evaluating forecast performance (processing option 19). A.8.1 Forecast Calculation Number of periods to include in regression (processing option 6a) 3 in this example For each month of the forecast, add the increase or decrease during the specified periods prior to holdout period the previous period. Average of the previous three months (114 119 137)3 123.3333 Summary of the previous three months with weight considered (114 1) (119 2) (137 3) 763 Difference between the values 763 - 123.3333 (1 2 3) 23 Ratio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 232 11.5 Value2 Average - value1 ratio 123.3333 - 11.5 2 100.3333 Forecast (1 n) value1 value2 4 11.5 100.3333 146.333 or 146 Forecast 5 11.5 100.3333 157.8333 or 158 Forecast 6 11.5 100.3333 169.3333 or 169 A.8.2 Simulated Forecast Calculation October 2004 sales: Average of the previous three months (129 140 131)3 133.3333 Summary of the previous three months with weight considered (129 1) (140 2) (131 3) 802 Difference between the values 802 - 133.3333 (1 2 3) 2 Ratio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 22 1 Value2 Average - value1 ratio 133.3333 - 1 2 131.3333 Forecast (1 n) value1 value2 4 1 131.3333 135.3333 November 2004 sales Average of the previous three months (140 131 114)3 128.3333 Summary of the previous three months with weight considered (140 1) (131 2) (114 3) 744 Difference between the values 744 - 128.3333 (1 2 3) -25.9999 Value1 DifferenceRatio -25.99992 -12.9999 Value2 Average - value1 ratio 128.3333 - (-12.9999) 2 154.3333 Forecast 4 -12.9999 154.3333 102.3333 December 2004 sales Average of the previous three months (131 114 119)3 121.3333 Summary of the previous three months with weight considered (131 1) (114 2) (119 3) 716 Difference between the values 716 - 121.3333 (1 2 3) -11.9999 Value1 DifferenceRatio -11.99992 -5.9999 Value2 Average - value1 ratio 121.3333 - (-5.9999) 2 133.3333 Forecast 4 (-5.9999) 133.3333 109.3333 A.8.3 Percent of Accuracy Calculation POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Mean Absolute Deviation Calculation MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Method 7 - Second Degree Approximation Linear Regression determines values for a and b in the forecast formula Y a bX with the objective of fitting a straight line to the sales history data. Second Degree Approximation is similar. However, this method determines values for a, b, and c in the forecast formula Y a bX cX2 with the objective of fitting a curve to the sales history data. This method may be useful when a product is in the transition between stages of a life cycle. For example, when a new product moves from introduction to growth stages, the sales trend may accelerate. Because of the second order term, the forecast can quickly approach infinity or drop to zero (depending on whether coefficient c is positive or negative). Therefore, this method is useful only in the short term. Forecast specifications: The formulae finds a, b, and c to fit a curve to exactly three points. You specify n in the processing option 7a, the number of time periods of data to accumulate into each of the three points. In this example n 3. Therefore, actual sales data for April through June are combined into the first point, Q1. July through September are added together to create Q2, and October through December sum to Q3. The curve will be fitted to the three values Q1, Q2, and Q3. Required sales history: 3 n periods for calculating the forecast plus the number of time periods required for evaluating the forecast performance (PBF). Number of periods to include (processing option 7a) 3 in this example Use the previous (3 n) months in three-month blocks: Q1(Apr - Jun) 125 122 137 384 Q2(Jul - Sep) 129 140 131 400 Q3(Oct - Dec) 114 119 137 370 The next step involves calculating the three coefficients a, b, and c to be used in the forecasting formula Y a bX cX2 (1) Q1 a bX cX2 (where X 1) a b c (2) Q2 a bX cX2 (where X 2) a 2b 4c (3) Q3 a bX cX2 (where X 3) a 3b 9c Solve the three equations simultaneously to find b, a, and c: Subtract equation (1) from equation (2) and solve for b (2) - (1) Q2 - Q1 b 3c Substitute this equation for b into equation (3) (3) Q3 a 3(Q2 - Q1) - 3c c Finally, substitute these equations for a and b into equation (1) Q3 - 3(Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2)2 The Second Degree Approximation method calculates a, b, and c as follows: a Q3 - 3(Q2 - Q1) 370 - 3(400 - 384) 322 c (Q3 - Q2) (Q1 - Q2)2 (370 - 400) (384 - 400)2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23)X2 January thru March forecast (X4): (322 340 - 368)3 2943 98 per period April thru June forecast (X5): (322 425 - 575)3 57.333 or 57 per period July thru September forecast (X6): (322 510 - 828)3 1.33 or 1 per period October thru December (X7) (322 595 - 11273 -70 A.9.2 Simulated Forecast Calculation October, November and December, 2004 sales: Q1(Jan - Mar) 360 Q2(Apr - Jun) 384 Q3(Jul - Sep) 400 a 400 - 3(384 - 360) 328 c (400 - 384) (360 - 384)2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Percent of Accuracy Calculation POA (136 136 136) (114 119 137) 100 110.27 A.9.4 Mean Absolute Deviation Calculation MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Method 8 - Flexible Method The Flexible Method (Percent Over n Months Prior) is similar to Method 1, Percent Over Last Year. Both methods multiply sales data from a previous time period by a user specified factor, then project that result into the future. In the Percent Over Last Year method, the projection is based on data from the same time period in the previous year. The Flexible Method adds the capability to specify a time period other than the same period last year to use as the basis for the calculations. Multiplication factor. For example, specify 1.15 in the processing option 8b to increase the previous sales history data by 15. Base period. For example, n 3 will cause the first forecast to be based upon sales data in October, 2005. Minimum sales history: The user specified number of periods back to the base period, plus the number of time periods required for evaluating the forecast performance (PBF). A.10.4 Mean Absolute Deviation Calculation MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Method 9 - Weighted Moving Average The Weighted Moving Average (WMA) method is similar to Method 4, Moving Average (MA). However, with the Weighted Moving Average you can assign unequal weights to the historical data. The method calculates a weighted average of recent sales history to arrive at a projection for the short term. More recent data is usually assigned a greater weight than older data, so this makes WMA more responsive to shifts in the level of sales. However, forecast bias and systematic errors still do occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products rather than for products in the growth or obsolescence stages of the life cycle. n the number of periods of sales history to use in the forecast calculation. For example, specify n 3 in the processing option 9a to use the most recent three periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. It results in a stable forecast, but will be slow to recognize shifts in the level of sales. On the other hand, a small value for n (such as 3) will respond quicker to shifts in the level of sales, but the forecast may fluctuate so widely that production can not respond to the variations. The weight assigned to each of the historical data periods. The assigned weights must total to 1.00. For example, when n 3, assign weights of 0.6, 0.3, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). MAD (133.5 - 114 121.7 - 119 118.7 - 137) 3 13.5 A.12 Method 10 - Linear Smoothing This method is similar to Method 9, Weighted Moving Average (WMA). However, instead of arbitrarily assigning weights to the historical data, a formula is used to assign weights that decline linearly and sum to 1.00. The method then calculates a weighted average of recent sales history to arrive at a projection for the short term. As is true of all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products rather than for products in the growth or obsolescence stages of the life cycle. n the number of periods of sales history to use in the forecast calculation. This is specified in the processing option 10a. For example, specify n 3 in the processing option 10b to use the most recent three periods as the basis for the projection into the next time period. The system will automatically assign the weights to the historical data that decline linearly and sum to 1.00. For example, when n 3, the system will assign weights of 0.5, 0.3333, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). A.12.1 Forecast Calculation Number of periods to include in smoothing average (processing option 10a) 3 in this example Ratio for one period prior 3(n2 n)2 3(32 3)2 36 0.5 Ratio for two periods prior 2(n2 n)2 2(32 3)2 26 0.3333.. Ratio for three periods prior 1(n2 n)2 1(32 3)2 16 0.1666.. January forecast: 137 0.5 119 13 114 16 127.16 or 127 February forecast: 127 0.5 137 13 119 16 129 March forecast: 129 0.5 127 13 137 16 129.666 or 130 A.12.2 Simulated Forecast Calculation October 2004 sales 129 16 140 26 131 36 133.6666 November 2004 sales 140 16 131 26 114 36 124 December 2004 sales 131 16 114 26 119 36 119.3333 A.12.3 Percent of Accuracy Calculation POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Mean Absolute Deviation Calculation MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Method 11 - Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing the system assigns weights to the historical data that decline linearly. In exponential smoothing, the system assigns weights that exponentially decay. The exponential smoothing forecasting equation is: Forecast a(Previous Actual Sales) (1 - a) Previous Forecast The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. a is the weight applied to the actual sales for the previous period. (1 - a) is the weight applied to the forecast for the previous period. Valid values for a range from 0 to 1, and usually fall between 0.1 and 0.4. The sum of the weights is 1.00. a (1 - a) 1 You should assign a value for the smoothing constant, a. If you do not assign values for the smoothing constant, the system calculates an assumed value based upon the number of periods of sales history specified in the processing option 11a. a the smoothing constant used in calculating the smoothed average for the general level or magnitude of sales. Valid values for a range from 0 to 1. n the range of sales history data to include in the calculations. Generally one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 3) was chosen in order to reduce the manual calculations required to verify the results. Exponential smoothing can generate a forecast based on as little as one historical data point. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). A.13.1 Forecast Calculation Number of periods to include in smoothing average (processing option 11a) 3, and alpha factor (processing option 11b) blank in this example a factor for the oldest sales data 2(11), or 1 when alpha is specified a factor for the 2nd oldest sales data 2(12), or alpha when alpha is specified a factor for the 3rd oldest sales data 2(13), or alpha when alpha is specified a factor for the most recent sales data 2(1n), or alpha when alpha is specified November Sm. Avg. a(October Actual) (1 - a)October Sm. Avg. 1 114 0 0 114 December Sm. Avg. a(November Actual) (1 - a)November Sm. Avg. 23 119 13 114 117.3333 January Forecast a(December Actual) (1 - a)December Sm. Avg. 24 137 24 117.3333 127.16665 or 127 February Forecast January Forecast 127 March Forecast January Forecast 127 A.13.2 Simulated Forecast Calculation July, 2004 Sm. Avg. 22 129 129 August Sm. Avg. 23 140 13 129 136.3333 September Sm. Avg. 24 131 24 136.3333 133.6666 October, 2004 sales Sep Sm. Avg. 133.6666 August, 2004 Sm. Avg. 22 140 140 September Sm. Avg. 23 131 13 140 134 October Sm. Avg. 24 114 24 134 124 November, 2004 sales Sep Sm. Avg. 124 September 2004 Sm. Avg. 22 131 131 October Sm. Avg. 23 114 13 131 119.6666 November Sm. Avg. 24 119 24 119.6666 119.3333 December 2004 sales Sep Sm. Avg. 119.3333 A.13.3 Percent of Accuracy Calculation POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Mean Absolute Deviation Calculation MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Method 12 - Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed averaged adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. a the smoothing constant used in calculating the smoothed average for the general level or magnitude of sales. Valid values for alpha range from 0 to 1. b the smoothing constant used in calculating the smoothed average for the trend component of the forecast. Valid values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast a and b are independent of each other. They do not have to add to 1.0. Minimum required sales history: two years plus the number of time periods required for evaluating the forecast performance (PBF). Method 12 uses two exponential smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal factor. A.14.1 Forecast Calculation A) An exponentially smoothed average MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Evaluating the Forecasts You can select forecasting methods to generate as many as twelve forecasts for each product. Each forecasting method will probably create a slightly different projection. When thousands of products are forecast, it is impractical to make a subjective decision regarding which of the forecasts to use in your plans for each of the products. The system automatically evaluates performance for each of the forecasting methods that you select, and for each of the products forecast. You can choose between two performance criteria, Mean Absolute Deviation (MAD) and Percent of Accuracy (POA). MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a user specified period of time. This period of recent history is called a holdout period or periods best fit (PBF). To measure the performance of a forecasting method, use the forecast formulae to simulate a forecast for the historical holdout period. There will usually be differences between actual sales data and the simulated forecast for the holdout period. When multiple forecast methods are selected, this same process occurs for each method. Multiple forecasts are calculated for the holdout period, and compared to the known sales history for that same period of time. The forecasting method producing the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in your plans. This recommendation is specific to each product, and might change from one forecast generation to the next. A.16 Mean Absolute Deviation (MAD) MAD is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD has shown to be the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, there is a simple mathematical relationship between MAD and two other common measures of distribution, standard deviation and Mean Squared Error: A.16.1 Percent of Accuracy (POA) Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently two low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high, would be an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. Error Actual - Forecast When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, it is not so important to eliminate forecast errors as it is to generate unbiased forecasts. However in service industries, the above situation would be viewed as three errors. The service would be understaffed in the first period, then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. The summation over the holdout period allows positive errors to cancel negative errors. When the total of actual sales exceeds the total of forecast sales, the ratio is greater than 100. Of course, it is impossible to be more than 100 accurate. When a forecast is unbiased, the POA ratio will be 100. Therefore, it is more desirable to be 95 accurate than to be 110 accurate. The POA criteria select the forecasting method that has a POA ratio closest to 100. Scripting on this page enhances content navigation, but does not change the content in any way. OR-Notes are a series of introductory notes on topics that fall under the broad heading of the field of operations research (OR). They were originally used by me in an introductory OR course I give at Imperial College. Sie sind jetzt für alle Schüler und Lehrer, die an ODER unter den folgenden Bedingungen interessiert sind, zur Verfügung. Eine vollständige Liste der in OR-Notes verfügbaren Themen finden Sie hier. Prognosebeispiele Prognosebeispiel 1996 UG-Prüfung Die Nachfrage nach einem Produkt in jedem der letzten fünf Monate ist nachfolgend dargestellt. Use a two month moving average to generate a forecast for demand in month 6. Apply exponential smoothing with a smoothing constant of 0.9 to generate a forecast for demand for demand in month 6. Which of these two forecasts do you prefer and whyThe two month moving average for months two to five is given by: The forecast for month six is just the moving average for the month before that i. e. the moving average for month 5 m 5 2350. Applying exponential smoothing with a smoothing constant of 0.9 we get: As before the forecast for month six is just the average for month 5 M 5 2386 To compare the two forecasts we calculate the mean squared deviation (MSD). Wenn wir dies tun, finden wir für den gleitenden Mittelwert MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18.76 - 23) sup2 (22.58 - 24) sup24 10.44 Insgesamt sehen wir dann, dass die exponentielle Glättung den besten einen Monat voraus prognostiziert, da es eine niedrigere MSD hat. Hence we prefer the forecast of 2386 that has been produced by exponential smoothing. Prognosebeispiel 1994 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einem neuen Aftershave in einem Shop für jeden der letzten 7 Monate. Berechnen Sie einen zweimonatigen gleitenden Durchschnitt für Monate zwei bis sieben. Was wäre Ihre Prognose für die Nachfrage in Monat acht Bewerben exponentielle Glättung mit einer Glättung Konstante von 0,1, um eine Prognose für die Nachfrage in Monat acht ableiten. Welche der beiden Prognosen für den Monat acht bevorzugen Sie und warum der Ladenbesitzer glaubt, dass die Kunden auf diese neue Aftershave von anderen Marken wechseln. Discuss how you might model this switching behaviour and indicate the data that you would require to confirm whether this switching is occurring or not. The two month moving average for months two to seven is given by: The forecast for month eight is just the moving average for the month before that i. e. the moving average for month 7 m 7 46. Applying exponential smoothing with a smoothing constant of 0.1 we get: As before the forecast for month eight is just the average for month 7 M 7 31.11 31 (as we cannot have fractional demand). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). If we do this we find that for the moving average and for the exponentially smoothed average with a smoothing constant of 0.1 Overall then we see that the two month moving average appears to give the best one month ahead forecasts as it has a lower MSD. Hence we prefer the forecast of 46 that has been produced by the two month moving average. Um das Umschalten zu untersuchen, müssten wir ein Markov-Prozessmodell verwenden, in dem die Ländermarken und die notwendigen Statusinformationen und Kundenwechselwahrscheinlichkeiten (aus Umfragen) benötigt werden. We would need to run the model on historical data to see if we have a fit between the model and historical behaviour. Prognosebeispiel 1992 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Rasiermesser in einem Geschäft für jeden der letzten neun Monate. Calculate a three month moving average for months three to nine. Was wäre Ihre Prognose für die Nachfrage in Monat zehn Bewerben exponentielle Glättung mit einer Glättung Konstante von 0,3, um eine Prognose für die Nachfrage in Monat zehn ableiten. Welche der beiden Prognosen für den Monat zehn bevorzugen Sie und warum Der dreimonatige gleitende Durchschnitt für die Monate 3 bis 9 ist gegeben durch: Die Prognose für den Monat 10 ist nur der gleitende Durchschnitt für den Monat vor dem dh der gleitende Durchschnitt für Monat 9 m 9 20.33. Daher ist die Prognose für den Monat 10. 20. Die Anwendung einer exponentiellen Glättung mit einer Glättungskonstante von 0,3 ergibt sich: Wie vorher ist die Prognose für den Monat 10 nur der Durchschnitt für den Monat 9 M 9 18,57 19 (wie wir Kann keine gebrochene Nachfrage haben). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). If we do this we find that for the moving average and for the exponentially smoothed average with a smoothing constant of 0.3 Overall then we see that the three month moving average appears to give the best one month ahead forecasts as it has a lower MSD. Daher bevorzugen wir die Prognose von 20, die durch den dreimonatigen gleitenden Durchschnitt produziert wurde. Vorhersage Beispiel 1991 UG Prüfung Die folgende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Faxgerät in einem Kaufhaus in jedem der letzten zwölf Monate. Calculate the four month moving average for months 4 to 12. What would be your forecast for the demand in month 13 Apply exponential smoothing with a smoothing constant of 0.2 to derive a forecast for the demand in month 13. Which of the two forecasts for month 13 do you prefer and why What other factors, not considered in the above calculations, might influence demand for the fax machine in month 13 The four month moving average for months 4 to 12 is given by: m 4 (23 19 15 12)4 17.25 m 5 (27 23 19 15)4 21 m 6 (30 27 23 19)4 24.75 m 7 (32 30 27 23)4 28 m 8 (33 32 30 27)4 30.5 m 9 (37 33 32 30)4 33 m 10 (41 37 33 32)4 35.75 m 11 (49 41 37 33)4 40 m 12 (58 49 41 37)4 46.25 The forecast for month 13 is just the moving average for the month before that i. e. the moving average for month 12 m 12 46.25. Daher ist die Prognose für den Monat 13 46. Die Anwendung einer exponentiellen Glättung mit einer Glättungskonstante von 0,2 erhalten wir: Wie vorher ist die Prognose für den Monat 13 nur der Durchschnitt für den Monat 12 M 12 38,618 39 (wie wir Kann keine gebrochene Nachfrage haben). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). If we do this we find that for the moving average and for the exponentially smoothed average with a smoothing constant of 0.2 Overall then we see that the four month moving average appears to give the best one month ahead forecasts as it has a lower MSD. Hence we prefer the forecast of 46 that has been produced by the four month moving average. Saisonale Nachfrage Werbung Preisänderungen, sowohl diese Marke und andere Marken allgemeine wirtschaftliche Situation neue Technologie Vorhersage Beispiel 1989 UG Prüfung Die Tabelle unten zeigt die Nachfrage nach einer bestimmten Marke von Mikrowellenherd in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie einen sechsmonatigen gleitenden Durchschnitt für jeden Monat. What would be your forecast for the demand in month 13 Apply exponential smoothing with a smoothing constant of 0.7 to derive a forecast for the demand in month 13. Which of the two forecasts for month 13 do you prefer and why Now we cannot calculate a six month moving average until we have at least 6 observations - i. e. we can only calculate such an average from month 6 onward. Wir haben also: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für die Monat vor dem dh der gleitende Durchschnitt für Monat 12 m 12 38,17. Hence (as we cannot have fractional demand) the forecast for month 13 is 38. Applying exponential smoothing with a smoothing constant of 0.7 we get:

Comments

Popular posts from this blog

Free Forex Handel Ohne Investition

Wie zu tun Forex Trading Lernen Sie, wie man Forex Trading mit ARB Trader Signale und genießen: Wie man Forex Trading. Aspiring Forex Trader sind in der Regel verweigert die richtige Information, um eine genaue Entscheidung vor Abonnement dieser interessante und dennoch herausfordernde Industrie. Es gibt Vorlieben führen Forex Trading und sich selbst vertraut mit ihm, wird Ihnen helfen, festzustellen, ob Forex Trading ist für Sie oder nicht, weil es isn8217t für alle. Allerdings, um die Route von Forex Trading zu verstehen, gibt es ein paar Optionen, die Sie beachten sollten. Forex Trading nt n f th gt reichen schnellen Schemata nd u rbbl gewonnen8217t b Millionär l n thr Jahre. Forex Trading doesn8217t Unterstützung der Schaffung n Instant Reichtum Paket t m t b n unrealistischen Ziel f th Geschäftsmodell. Thr r vrl Faktoren tht Führer th Trading-Plattform whh bestimmt hw muh Trader n mk abhängig n hw exponiert Trader t th Plattform nd Theorie Führung th Forex Markt. It8217s bl fr For...

Forex Handel Wochenende

Was sind die Wochenend-Lücken in Forex-Markt In: Trading Letzte Aktualisierung: 25. August 2014 Ich bin immer gefragt, über die Wochenende Lücken, und ob wir können sie handeln und etwas Geld oder nicht. Dies ist eine gute Chance, einen Beitrag über die Lücken zu haben, denn gestern hat sich der Devisenmarkt mit einigen relativ großen Lücken mit vielen der Währungspaare eröffnet. Zuerst lassen Sie mich Ihnen sagen, was eine Lücke ist und warum sie auf den Charts erscheinen. Gap ist ein leerer Raum, den man zwischen zwei Leuchtern oder Bars sehen kann. Es erscheint auf den Charts wegen der Preisbewegung während der Zeit, in der das Diagramm nicht aktualisiert wurde, wie wenn der Markt geschlossen ist. 8220Gaps8221 sind an der Börse sehr verbreitet, denn im Gegensatz zum Devisenmarkt ist die Börse nicht 24 Stunden am Tag geöffnet und zum Beispiel die New Yorker Börse (NYSE) um 9:30 Uhr und schließt um 16:00 Uhr Wenn die Aktie öffnet, gibt es sichtbare Unterschiede zwischen den gestern821...